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1 Introduction

Let Xp and X1 be two distinct points on the unit
sphereS" c E™! n> 2. Let Tp and T; be two
nonzero vectors that are tangent 3 at Xo and

X1, respectively. LeD = {Xq, To; X1, T1}. We con-
sider the problem of using a parametric culR@),

t € [0, 1], on S to interpolateD. In other words, we
wish to find a curveP(t), t € [0, 1], on S" such that
P(0) = Xo, P(1) = X1, P'(0) = Tp, andP’(1) = Ty.

For brevity, a curve that lies on a sphere is termed
aspherical curveThe particular problems this paper
is concerned with are the existence and computation
of spherical rational (SR) quartic curves interpolat-
ing D = {Xo, To; X1, T1} On S

SR curves have only even degrees. The simplest SR
curves are of degree 2, i.e. circles. Circular arcs have
been used for data interpolation and approximation
on a sphere in the form of circular arc splines or
bi-arcs. General SR curves of degrakiave been
constructed in the literature as the images of rational
curves of degre@ under stereographic projection.
However, no existing work addresses the problem
of using SR quartic curves for Hermite interpola-
tion with the dataD = {Xoq, To; X1, T1} in general
positions.

The main results of this paper are the following. It is
shown that, for any datB = { X, Tp; X1, T1} given

on S, there exist SR quartic curves &l interpolat-

ing D, and all these curves form a family withde-
grees of freedom. In addition, a method is presented
to compute all SR quartic curves that interpolBte
This method is based on direct algebraic manipu-
lation, instead of stereographic projection, which is
used in most other existing methods for construct-
ing general SR curves. In fact, we show that stere-
ographic projection cannot generate all SR quartic
curves onS' as the images of rational quadratic
curves whem > 3.

1.1 Related work

Curves in the unit quaternion space are used for
modeling rotations in computer animation [8, 9].
These curves are essentially spherical curves, since
the sgace of unit quaternions can be identified
with S°.

Among all spherical curves, the SR curves have sim-
ple expressions and are relatively easy to construct.
The stereographic projection is used in [4] to con-
struct general SR curves for interpolation®n This
approach consists of three main steps: (1) map in-
terpolation data 0i$? to be interpolated into data in
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a 2D plane, (2) construct a planar rational curve o
degred to interpolate the mapped data in the plane
and (3) map the planar rational curve back into a
SR curve of degreed?on & to interpolate the orig-
inal data. So far, most existing work on construct
ing SR curves has been based on the stereograp
projection [1, 6, 14].

SR curves can only have even degrees. The S
curves of degree 2 are circular arcs. The construg
tion of circular arc spline curves on a sphere has beg
discussed in [4,11,13]. An SR curve of degree 6
is constructed in [6] for interpolating Hermite data
in the unit quaternion space, using a transformatio
from number theory, which is equivalent to the stan
dard stereographic projection @. A generalized
form of stereographic projection is used in [14] to
construct SR curves of degree 6 for Hermite inter
polation. A different generalization of stereographic
projection is studied in [7] for converting the prob-
lem of interpolation points o%? by SR curves into
one of interpolating lines in 3-D space.

The obvious gap between SR quadratic curves and

SR curves of degree 6 are the SR quartic curves.

The use of SR quartic curves for Hermite interpo-mite data orS" hasn degrees of freedom. The paper
lation has not been addressed in the literature. Onlgoncludes in Sect. 4.

spherical quartic curves interpolating five data points

on a sphere are considered in the study by Gfr- )

errer [3] on general rational interpolation on a hy-2 EXistence

persphere. This status is probably due to two limita-

tions of applying stereographic projection. First, inGiven dataD = {Xg, Tp; X1, T1} on a sphereS",

a typical approach employing stereographic projech > 2, we show that there always exist SR quartic
tion, SR quartic curves would have to be obtainedturves interpolatind>. We further point out that not

as the images of rational quadratic curves. Howeveasll of these curves can be obtained by stereographic
rational quadratic curves, as conic sections, have ngrojection unlesa = 2.

inflection points, so they cannot interpolate generalhe line determined by two poind andY; is de-
Hermite data. Second, although stereographic praioted by[YpY:1]. The line determined by a poiivy
jection maps rational quadratic curves into SR quarand a directional vectdyg is denoted byYoUq]. The

tic curves, not all SR quartic curves can be obtainedtandard stereographic projection is defined between
in this way, even by using different centers of projec-S* and the planez =0 throg%h a projection with
tion. In fact, we will show that, when > 3, stereo- its center at the north pole &, i.e. N = (0,0, 1).
graphic projection is incapable of generating all SRSee Fig. 1. We need to extend this definition in three
quartic curves as the images of rational quadratigvays. First, any poin€ = (cp, ¢1, ¢) on & can be
curves orS". This motivates us to find a method thatused as the center of a stereographic projection. In
can generate all SR quartic curves 8hinterpolat-  this case, unless otherwise specified, the correspond-
ing Hermite data. ing projection planeMc passes through the origin
The rest of the paper is organized as follows. Inand hagcy, ¢, ¢2) as its normal vector. Second, any
Sect. 2 we prove the existence of SR quartic curveplane not passing through the center of projection
for Hermite interpolation. In Sect. 3 we present an al-can be used as the projection plane. In this case, the
gebraic method of computing all SR quartic curvesstereographic projection is still birational, butin gen-
interpolating given Hermite data. We show that theeral no longer possesses the circle-preserving prop-
family of SR quartic curves interpolating given Her- erty. Third, we extend stereographic projection to

Fig. 1. Standard stereographic projection
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a hyperspher&". In this case, the center of projec-
tion is a pointC on S", and the mapping is defined
betweerS" and a hyperplane ig"*.

For general dat® = {Xp, Tp; X1, T1} on S, there
exists an affine 3-spadeé that is spanned by points
Xo and X1 and vectorsTy and Ty; if the three vec-
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line between planedl andW;. ThenYg, Y1, andZ
are all finite points oM¢ as long adVic is not paral-
lel to any of the line$XoC], [ X1C], andL.

For a pointY in the planeMc, the map?c induces
a linear map7y from the space of vectors origi-
nating atY on the planeMc to the space of tan-

tors X1 — Xo, To, and Ty are linearly independent, gent vectors t&? at Pc(Y). LetUg = Tygl(To) and

H is a translation of the 3-D linear space spanneg\zlJ

by X1 — Xo, To, and T1. Let S denote the 2-D
sphere that is the intersection 8f and H. Then
we can consider a similar problem of interpolating
D = {Xo, To; X1, T1} by an SR quartic curve o8.
Since the existence of solutions is invariant unde

scaling transformation, without loss of generality, we

can replaceS by &. Thus, we only need to prove
that, for any datdD = {Xg, To; X1, T1} on &, there
exist SR quartic curves of? that interpolateD.

1= 7y, "(Ty). LetD = (Yo, Up: Y1, Us}. Clearly, if

we can find a curv€(t) interpolatingD in the plane
Mc, thenP(t) = £c(Q(t)) will be a spherical curve
on S interpolatingD.

Now consider a rational quadratic Bézier curve

Q)= QowoB2,0(t) + Qrw1By 1(t) + Qew2 Bz o(1)
woB2,0(t) +w1Bz 1(t) +w2B22(1)
te]0, 1]

Consequently, the existence proof for a hypersphere

S will follow.

Theorem 1. Let Xp and X3 be two distinct points
on . Let Tp and T; be two nonzero vectors that
are tangent to? at Xo and Xy, respectively. There
exist SR quartic curves off that interpolateD =
{Xo, To; X1, T1}.

with control pointsQp = Yp, Q2 =Yy, and Q1 =
Z =gnh. Since
w

2
Q'(0)="2(Q1 — Qo) andQ'(1)=

w1

2w
“2(Q2-Qu
w1

to makeQ(t) interpolateD, we must find the weight
wj such that2wo/w1)(Q1— Qo) = UgandQ’(1) =

Proof. We use stereographic projection as the main2y, /w1)(Q, — Q1) = U1. Without loss of gen-
mechanism in the pI’OOf. Consider the penCiI Ofera”ty’ we can assumeg = 1. Then w1 and wr

planes passing througXoX1]. There are two planes
Po andPy in this pencil that contain the tangent lines
[XoTol and[X1T1] of &, respectively. Now choose
a pointC e S distinct fromXg and X1 such that the
plane determined b, Xo and X, is distinct from
Po and P;. Obviously, all points orS? can be se-
lected asC, except those on the two circld® N S?
andP;N 2.

Now consider the stereographic projecti®a cen-
tered atC from the projection plan®lc to . Ac-
cording to the wayC is chosenXp and Xz and the
two tangent line$XoTo] and[X1T1] are mapped by
J’C‘l into two pointsYg andYs and two linesg and

h, respectively, on the planklc, in such a config-
uration that the lineg does not contairy; and the
line h does not contaiiYy. The four different config-
urations of the mapped data on plavie are shown
in Fig. 2

Let Z = gNh denote the intersection point between
linesg andh. A key assumption we have to make is
thatYp, Y1, andZ are finite points. This can be sat-
isfied by properly choosing the projection plavie.
Let W, denote the plane determined by paothaind
line [XjTi],i =0, 1. Let L denote the intersection

can be solved for uniquely as follows. @1 — Qo
andUg have the same direction, then = 2|Q1 —
Qol/[Uol; otherwisew; = —2|Q1 — Qol/|Uo|. Hav-

ing obtainedws, if Q2 — Q1 and w;U; have the
same direction, therw,; = |w1U1|/(2]Q2 — Q1));
otherwisew, = —|w1U1]/(2|Q2 — Q1]). In cases 2
and 3, and probably in case 4 of Fig. 2, the curve
Q(t) is discontinuous, since it contains points at in-

finity. However, its image curvd(t) = £c(Q(t))

under stereographic projection is still a continuous
SR quatrtic curve, which interpolates the original data
D = {Xo, To; X1, T1}, since points at infinity oM¢
are mapped byPc into well-defined points or?.
Hence, the existence of SR quartic curves interpolat-
ing D is proved.

Remarksln this proof, when the center of projection
C and the projection planklc are fixed, the result-
ing SR quartic curve>(t) interpolatingD is unique,
sinceQ(t) is unique orMc. If we use a different pro-

jection planeMc, while fixing C, then the resulting

SR curveP(t) on & interpolatingD is the same as
P(t), since the intermediate rational quadratic curve

Q(t) on Mc is related toQ(t) under a perspective
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Fig. 2. Four cases of the mapped data

projection. HenceP(t) is uniquely determined by Theorem3. An SR quartic curve orf? has ex-
the center of projectio@ and is independent of the actly one singular point. Furthermore, an SR quartic

choice of the projection plaridc. ~ curve on% is the image of a rational quadratic
By Theorem 1 and the discussion preceding it, Weurve under the stereographic projection centered at
obtain Theorem 2 the singular point of the SR quartic curve.

Theorem 2. Let Xp and X; be two points onS",
n> 2. Let Tp and Ty be two nonzero vectors that
are tangent toS! at Xg and X3, respectively. There

RemarksThis is implied by a classical result about
algebraic curves on a quadric surface [10]. There are
. : : 7 two species of quartic curves lying on a quadric sur-
?;lstTSRXqUé%r'E}IC curves off' that interpolateD = face. A rational quartic curve on a sphere is in the

0, 10, AL, T4} first speciesf it can be obtained as the intersection
We are now interested in knowing how many SRof two quadrics; a quartic curve in teecond species
quartic curves there are @ interpolating the given is the partial intersection of a quadric and a cubic
dataD = {Xq, To; X1, T1}. First, some properties of surface. Here we provide a simple argument for this
SR quartic curves of? are given. result.
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Proof. Let P(t) be an SR quartic curve of?. Let quartic curves, since, by Theorem 3, they have dis-
C = P(tp) be a regular point oP(t). Consider the tinctsingular point<; andCs. Hence, the degree of
stereographic projectiofc with its center aC. It  freedom of all SR quartic curves & interpolating

is easy to see tha¥(t) is mapped bw)c—l intoara- DIs the same as t_hat of all points & (except for
tional cubic curveQ(t) in the planeMg. It is well the points on two circles), which is 2. This completes
known that a rational cubic planar curve has exactijh€ Proof.

one double point [15]. Led denote the double point While Theorem 3 states that stereographic projection
of Q(t). LetU = £ (U). ThenU is a double point can be used to generate all SR quartic curves interpo-
of P(t) on S2. Now useU as the center of another lating the given dat® = {Xo, To; X1, T1} on S, the
stereographic projectioPy. Then P(t) is mapped evidence to be examined indicates that stereographic
by £ % into a rational quadratic curé *(P(t)) on  Projection is incapable of generating all SR quartic
the projection plan&ly. Hence P(t) is the image of ~ curves interpolatind if D is given onS', where

a rational quadratic curve under a stereographic prd? = 3. By ‘using stereographic projection’ we mean

jection centered af . This completes the proof. here that one aims at obtaining SR quartic curves
as the images of rational quadratic curves. Suppose

In the proof, if we construct a quadratic cone Withipa qataD — {Xo, To; X1, T1} on S are mapped by
its apex alJ and its intersection with the plaridy a stereographic projection inf = (Yo, Uo: Y1, Us)

. . . _l
being the conic sectiow, “(P(1)), then the curve g e interpolated by a rational quadratic curve. Since
P(t) plus pointU form the intersection between the 5 rational quadratic curve is necessarily planar,

sphereS” and the quadratic cone. Thus, we haVethe dataD must be contained in a 2-D plane. How-

Theorem 4. _ _ _ ever, for general dat® = {Xq, To; X1, T1} on S,
Theorem 4.Any SR quartic curve of” is the inter-  t is easy to see tha is contained in a 2-D plane
section curve betwee® and a quadratic cone with if and only if the center of projection is on the 2-

; 2 . ) .
its apex ors”. D sphereS that is the intersection betweesi and

A detailed discussion about the classification of dethe unique 3-D flatH spanned byD. By an argu-
generate intersection curves between two quadrigent similar to that leading to Theorem 5, we con-
surfaces can be found in [2]. The degree of freedorglude that the family of SR quartic curves &1

of an SR quartic curve interpolating the given datanterpolatingD that can be obtained by the stere-
D = {Xo, To; X1, T2} on S is given by the next the- ographic projection approach has only two degrees
orem. of freedom, and all these SR quartic curves lie on

: the 2-D spheres, hence in the 3-D flaH. As a ra-
Theorem 5.Given the datd = { Xq, Tg; X1, T1} on . .
2, the family of all SR quartic curves d& inter- tional quartic curve naturally spans a 4D space, we

. - ) _ suspect that the SR quartic curves given by stereo-
|toeorlsat|ng D = {Xo, To: X1, Ta} has two free parame graphic projection form only a subset of all possible

SR quartic curves 08", n > 3. Indeed, in the next
Proof. By Theorem 3, all SR quartic curves &  section we take an algebraic approach to generat-
can be obtained as the images of rational quadratiag all SR quartic curves interpolating the given data
curves through stereographic projection. Given anyp = {Xq, To; X1, T1} on S, and show that the fam-
dataD = {Xo, To; X1, T1} onS?, according to the ar- ily of these curves actually hasdegrees of freedom.
gument in the proof of Theorem 1, there is a unique

SR quartic curve interpolatin® for each fixed cen-

ter of stereographic projection. 3 Computation

Now we just need to show that different points on

§*, when they are used as centers of different sterequpile stereographic projection is used in the exis-
graphic projections, give rise to different SR quarticience proof, we recognize three problems with using

curves onS” interpolatingD. Let Py(t) andPa(t) be it for computing SR quartic interpolating curves.
two SR quartic curves interpolating that are ob-

tained by using two distinct point€; andC, on 1. Such a construction scheme would depend on
& as the centers of stereographic projection, respec- first choosing a center of projection, which is
tively. Then P1(t) and P»(t) are two different SR a difficult task unless the dafais well behaved,
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i.e. Xg and X1 are close to each other and the di-Similarly,
rections ofTg and T do not deviate much from
the direction of vectoX; — Xo. Py=X;— 21T, @)
2. The stereographic projection is not distance pre- 4wy
serving, and there is in general considerabl - _ _ -
shape distortion between the intermediate inter%emngvO = To/4 andVy = —Ty/4, we obtain
polating rational quadratic curv®(t) and its
imageP(t) = £c(Q(t)), especially when discon-
tinuous curve®)(t) are encountered, as in cases 2
and 3in Fig. 2. Thus,P(t) can be written as
3. Most importantly, as suggested at the end of
last section and to be verified later in this sec-P(t) = 00XoBo,4(t) + (woXo + 00Vo) By 4(t)

P1:X0+@VO, P3=X1+ﬂV1.
wo w1

tion, the stereographic projection images of ratio- + PyBp a(t) + (w1 X1 + 01V1) Ba 4(t)
nal quadratic curves do not yield all SR quartic ' '
curves orS". +01X1Bg4(t), te[O,1].

Based on these considerations, we shall study a di-gt 90 pe represented bXT AX = 0, where A =
rect algebraic approach to computing SR quartigjiag1, 1,..., 1, —1] is an(n +2) x (n+2) matrix.

curves onS' interpolating the dateD = {Xo. To;  ThenP(t)T AP(t) = O for allt. Using the relation
X1, T1}, given the existence of such curves by

Theorem 2. 441G + DB —i — !

In the following, a pointX is represented by ho- Bi 4(1)Bj.a(t) = 8@ —0) 1= ])! Bi+j.8(,
mogeneous cqo_rdinat@(s: (X05 X1, -+ - Xn, W) in o e '

EML For a finite point X with w # 0, we call  pt)TAP(t) can be expressed as a linear combi-
(Xo/w, X1/w, ..., Xn/w,1)" the standard formof  nation of the basis function®y g(t), 0 < k < 8.

X SinceP(t)T AP(t) = 0, all the nine coefficients of the

Consider a rational quartic curve in homogeneoug, g t1) in this expression should be zero. Since
coordinates in Bézier form

T —_yT T _yT _
P(t) = 00PoBo (1) + woP1B1 4(t) + P2By 4(t) XoAXo=Xo AVo= X1 AXe=X1 AL =0. (3)

+w1P3B3 a(t) + 01PaBaa(t), te€][0,1]. the first two and the last two coefficients vanish auto-
matically. The vanishing of the five remaining coeffi-

We assume that all thé>, except for P, are cients leads to the equations

in the standard formP(t) is used to interpolate
data pointsXp, X; on S'" and end tangent vec- 3 - 4 -
tors To and Ty specified atXy and Xi, respec- ?Qoxo AP+ ?(ono+QoVo)

tively. Here theX;, i =0, 1, are in the formX; = .
(X0.i» XLi, ---»X%ni» 1T and theT;, i =0, 1, are in x A(woé(o_"gov‘)) =0 “)
the formT; = (to,i» tais ..., thyi, O)T- . —Q()Xi)r A(wi1X1+01V1) + ?(ono +Q0V0)T
Denote the standard form &f(t) by P(t). Then the AP, — 0 5
interpolation conditions are 18 16 x ARy = ®)
P0)=Xo, P1)=X; x Py AP+ x (woXo+ 00Vo) " A(w1 X1+ 01V1)

PO=To, P()=T. 1 ;
It follows first thatPy = XgandPs = Xj. Itis easyto + 3_59091)(0 AX1=0 (6)
verify that 1 o1 6 -
. 4w 01X A(woXo+ 00Vo) + 5 (w1 X1+01Vh)
P'(0) = —(PL— P). / !

00 x AP, =0 (7)

; D/ _ 3 4

Thenit foIIO\év()s fromP’(0) = Tp that 7Q1XIAP2+ 7(w1><1+Q1\/1)T
Pr= Xo+-—To. (@)

A x A(wiX14+01V1) =0.  (8)
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Using (3) and assumingpe1 # 0, these equations In case 1, using the relations of Eq. 14, it follows

can be simplified into

3X§ AP 4400V AVo =0 9)
00X¢ A(w1 X1+ 01V1) + 6(woXo+00Vo) "
x AP, =0 (10)

18P] AP, + 16(woXo+00Vo) " A(wi X1 +01V1)

+0001X§ AX1=0 (11)
01X] A(woXo + 00Vo) + 6(w1 X1 +01V1)T

x AP, =0 (12)
3X] AP, +401V] AV; =0. (13)
From Egs. 9 and 13, there are

T 4 T
Xo APy =—200Vg AV and
4

XIAP, = —§Q1V1T AVi. (14)

from Eqg. 15— 18 that

3XJ AP,

S 20
T TV A (20)

3XI AP,

S 21
R VAFVA (21)
8(Vy AVp)wo — (X§ AXp)wy

3XT AV
—6VJAP, - 0 (xThA 22
o AP 4V1TAV1( 1AP) (22)
— (X AXDwo+8(V{ AV wy
3XTAV
=6V AP, — L —(XTAP). 23

SinceA # 0, wp andwj can be expressed linearly in
terms of P, from the last two equations. Substituting
wo, w1, 00, andes into Eg. 19, we obtain a homo-

geneous quadratic equation, denotedpP,) = 0,

in the n+4 2 coordinates ofP,. Each solutionP, of

Substituting them into Egs. 10 and 12 respectivelyr, (p,) = 0 determines uniquely the values of,
removing the faCtOf@o andQ]_, and rearranging the w1, 00, andgl’ which in turn y|e|d an SR quartic

order, we obtain the following of equations

3XJ AP = —400Vy AVp (15)
3X] AP, = —401V] AVy (16)
6Vy AP, =8(Vy AVo)wo — (X§ AXp)wy

— (Xg AVio1 (17)
BV AP, = —(XJ AXp)wo +8(V] AVi)w

— (X] AVo)oo (18)

18P] AP, + 16(woXo+00Vo) T A(w1 X1 +01V1)
+0001Xg AX1=0. (19)

Here the last equation is identical to Eq. 11. This i
a system of five homogeneous equations bindiag

6 homogeneous variablas+ 2 variable coordinates
of P, plus the four weightgg, 01, wo, andw1). Thus,

in general, the number of independent parameters

curve interpolatindd = {Xo, To; X1, T1}.

By Theorem 2,F1(P2) = 0 has real solutions. For
better notation, we denote the equatief{P;) =0
by F1(Y) = 0, with Y standing for then + 2 variable
coordinates oP,. The standard way to find all real
points on the quadric surfadg (Y) = 0 is to reduce
F1(Y) = 0 by affine transformation into a canonical
form F1(X) = 0. Itis then easy to find a real poiB

on surfaceéF1(Y) = 0, and therefore a corresponding
real pointC; on F1(Y) = 0. UsingC; as a center of
projection, a rational quadratic parameterization of
the quadric surfac&1(Y) = 0 can be obtained [12].
This parameterization gives out all real poifson
F1(Y) = 0, exceptfor the centéd;.

Sn case 2, sincel = 0, wg andwq cannot be isolated

from Egs. 22 and 23. In this case, for Egs. 22 and 23
to be consistent, the following linear condition must

Itz:‘e imposed o1fs.

(n+6) —5—1=n. By Theorem 2, these equations axT AV
must be consistent and have real solutions. 8(Vy AVo) 6y AP, — W(XIAPZ)
Now we discuss how to solve this system of equa axT AV =0,
tions. The general idea is to substitute the weights | —(XJ AX1) 6V AP, — VA AV (XJAP)
0

01, wo, andws in Eg. 19 to turn it into a quadratic

equation in P,. Let A = 64(Vy AVo) (V] AVy) —

(24)

(ngxl)% There are two cases to consider: (1)whichis denoted by.>(P) = 0. Since the system of

A #0and (2)A = 0.

equations under consideration is homogeneous, we
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may setwg = 1. Thenw, can be solved for from
Eqg.22as

w1 |:8(V0T AVp) — 6V, AP

Xg AXq
3XJAVL _;
A AVl(Xl APZ)} '
Settingwg = 1, substituting thiaw1, andeg and 1
from Eqgs. 20 and 21, into Eq. 19, we obtain an in
homogeneous quadratic equationRs denoted by
F2(P,) = 0. Thus,P, is determined byL»(P>) =0
andF>(Py) =0.
Again, by Theorem 2, there are real solutidhssat-
isfying L2(Y) = 0 andF2(Y) = 0; hereY denotes the
coordinates oP,. All real solutionsP, can be found
by the following procedure. First we pigk+ 1 lin-
early independent pointd;j, i =0, 1, ..., n, on the
hyperplanel,(Y) = 0. Then we obtain a linear pa- Fig. 3. Some SR quartic interpolating curves h
rameterization of.2(Y) =0 such as

Y(R) =rgUg+riUs+---+rpUn,

where R= (ro,r1,...,rn). SubstitutingY(R) into 5—-4 4
F2(Y) =0, we obtain a quadric surfad®>(R = = |4 ° 4 4
F>(Y(R) = 0, which is inhomogeneous, since 4 j :15 —1?;’

F2(Y) = 0 is inhomogeneous. Then the similar 4
procedure in case 1 can be used to parameteri

_ _ T ;
G(R) = 0 to get all the real points 06,(R) — 0. s easy to see thd® = (0,0, —1,1)" is a solution

These points in turn give out all solutioRs through
P, = Y(R).

Clearly, in either case 1 or case 2, there miade-
pendent free parameters in the solutioPpfHence,
the family of all SR quartic curves interpolatifiy=

{Xo, To; X1, T1} on 8" hasn degrees of freedom.

of YTMY = 0. Using thisP,, by Egs. 25 — 28, we
find the weightsog, 01, wo, andws, which in turn
yield the control pointd?; and P3 through Eq. 1 and
2. Finally, we obtain the following SR quartic curve
interpolatingD.

P(t) = 00PoBo,a(t) + woP1 By 4(t) + P2B2 4(t)

Now we use a running example to illustrate the pro-
cess of computing an SR quartic interpolating curve.

ConsiderD = {Xo, To; X1, T1} on S, whereXg =
(1,0,0,1)7, To=(0,1,0,0)", X1 =(0,1,0, 1T,
and Ty = (0,0,1,0)T. Then Vo= (0,1/4,0,0)7
andVy = (0,0, —1/4,0)". SinceA = —3/4 # 0, we
have case 1 at hand, and we can solvedgandw,
from Egs. 22 and 23. We then obtain

00=(—12,0,0,12)P, (25)
01=(0,-120,12)P, (26)
wo=(—4,-1,-2,4)P, 27)
w1=1(2,2,1,—-2)P,. (28)

+w1P3B3a(t) +01P4aBaat), tel0,1],
wherepo =01 =12, wg =6, w1 = -3, P = (1, 0,
017, PL=(1,0501", P,=(0,0-1,1T7,
P3=(0,1,1,1)T,andP,=(0,1,0,1).

Figure 3 shows another example of some SR quar-
tic curves on<? interpolating the dat® = { X, To;

X1, T1}, with Xg=(1,0,0, )T, To=(0,3,0,0)T,
X1=(0,1,0,1)T,andT; = (0,0,1,0)7.

Figure 4 shows a spherical motion generated by
an SR quartic curve or$® interpolating the data

D = {Xo, To; X1, T1}, with Xg= (0,0,0,1,1)T,

Substituting these into qu 19, we have a quadrati@y = (0,1,0,0,0)T, X; = (0,1,0,0, 1)T, andT; =

equation inP,, denoted byr ' MY = 0, where

(0,0,1,0,0)T; a point (xo, X1, X2, X3, 1)T € S is
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Fig. 4. The spherical motion generated by a 4D SR curve

identified with the unit quaternion = X3 + Xgi +
X1] +X2k. HereP, &~ (2.6874190.0, 0.0, 0.0, 1.0) .
Clearly, P(t) is a 4-D curve sinc®; is not contained
in the 3-space spanned by, X1, To, andTs.

4 Conclusion

We have shown that there exist SR quartic curves ing3,

terpolating any Hermite dat® = {Xg, To; X1, T1}
onS", n > 2, and all these curves form a family with

n degrees of freedom. In addition, it is shown that,14'
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