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We study the existence and computation of
spherical rational quartic curves that inter-
polate Hermite data on a sphere, i.e. two
distinct endpoints and tangent vectors at the
two points. It is shown that spherical rational
quartic curves interpolating such data always
exist, and that the family of these curves
hasn degrees of freedom for any given Her-
mite data onSn, n ≥ 2. A method is pre-
sented for generating all spherical rational
quartic curves onSn interpolating given Her-
mite data.
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Let X0 and X1 be two distinct points on the unit
sphereSn ⊂ En+1, n ≥ 2. Let T0 and T1 be two
nonzero vectors that are tangent toSn at X0 and
X1, respectively. LetD = {X0,T0; X1,T1}. We con-
sider the problem of using a parametric curveP(t),
t ∈ [0,1], on Sn to interpolateD. In other words, we
wish to find a curveP(t), t ∈ [0,1], on Sn such that
P(0)= X0, P(1)= X1, P′(0)= T0, andP′(1)= T1.
For brevity, a curve that lies on a sphere is termed
aspherical curve. The particular problems this paper
is concerned with are the existence and computation
of spherical rational (SR) quartic curves interpolat-
ing D= {X0,T0; X1,T1} on Sn.
SR curves have only even degrees. The simplest SR
curves are of degree 2, i.e. circles. Circular arcs have
been used for data interpolation and approximation
on a sphere in the form of circular arc splines or
bi-arcs. General SR curves of degree 2d have been
constructed in the literature as the images of rational
curves of degreed under stereographic projection.
However, no existing work addresses the problem
of using SR quartic curves for Hermite interpola-
tion with the dataD = {X0,T0; X1,T1} in general
positions.
The main results of this paper are the following. It is
shown that, for any dataD= {X0,T0; X1,T1} given
on Sn, there exist SR quartic curves onSn interpolat-
ing D, and all these curves form a family withn de-
grees of freedom. In addition, a method is presented
to compute all SR quartic curves that interpolateD.
This method is based on direct algebraic manipu-
lation, instead of stereographic projection, which is
used in most other existing methods for construct-
ing general SR curves. In fact, we show that stere-
ographic projection cannot generate all SR quartic
curves onSn as the images of rational quadratic
curves whenn≥ 3.

1.1 Related work

Curves in the unit quaternion space are used for
modeling rotations in computer animation [8, 9].
These curves are essentially spherical curves, since
the space of unit quaternions can be identified
with S3.
Among all spherical curves, the SR curves have sim-
ple expressions and are relatively easy to construct.
The stereographic projection is used in [4] to con-
struct general SR curves for interpolation onS2. This
approach consists of three main steps: (1) map in-
terpolation data onS2 to be interpolated into data in
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a 2D plane, (2) construct a planar rational curve of
degreed to interpolate the mapped data in the plane
and (3) map the planar rational curve back into an
SR curve of degree 2d on S2 to interpolate the orig-
inal data. So far, most existing work on construct-
ing SR curves has been based on the stereographic
projection [1, 6, 14].
SR curves can only have even degrees. The SR
curves of degree 2 are circular arcs. The construc-
tion of circular arc spline curves on a sphere has been
discussed in [4, 11, 13]. An SR curve of degree 6
is constructed in [6] for interpolating Hermite data
in the unit quaternion space, using a transformation
from number theory, which is equivalent to the stan-
dard stereographic projection onS3. A generalized
form of stereographic projection is used in [14] to
construct SR curves of degree 6 for Hermite inter-
polation. A different generalization of stereographic
projection is studied in [7] for converting the prob-
lem of interpolation points onS2 by SR curves into
one of interpolating lines in 3-D space.
The obvious gap between SR quadratic curves and
SR curves of degree 6 are the SR quartic curves.
The use of SR quartic curves for Hermite interpo-
lation has not been addressed in the literature. Only
spherical quartic curves interpolating five data points
on a sphere are considered in the study by Gfr-
errer [3] on general rational interpolation on a hy-
persphere. This status is probably due to two limita-
tions of applying stereographic projection. First, in
a typical approach employing stereographic projec-
tion, SR quartic curves would have to be obtained
as the images of rational quadratic curves. However,
rational quadratic curves, as conic sections, have no
inflection points, so they cannot interpolate general
Hermite data. Second, although stereographic pro-
jection maps rational quadratic curves into SR quar-
tic curves, not all SR quartic curves can be obtained
in this way, even by using different centers of projec-
tion. In fact, we will show that, whenn≥ 3, stereo-
graphic projection is incapable of generating all SR
quartic curves as the images of rational quadratic
curves onSn. This motivates us to find a method that
can generate all SR quartic curves onSn interpolat-
ing Hermite data.
The rest of the paper is organized as follows. In
Sect. 2 we prove the existence of SR quartic curves
for Hermite interpolation. In Sect. 3 we present an al-
gebraic method of computing all SR quartic curves
interpolating given Hermite data. We show that the
family of SR quartic curves interpolating given Her-

Fig. 1. Standard stereographic projection

mite data onSn hasn degrees of freedom. The paper
concludes in Sect. 4.

2 Existence

Given dataD = {X0,T0; X1,T1} on a sphereSn,
n≥ 2, we show that there always exist SR quartic
curves interpolatingD. We further point out that not
all of these curves can be obtained by stereographic
projection unlessn= 2.
The line determined by two pointsY0 andY1 is de-
noted by[Y0Y1]. The line determined by a pointY0
and a directional vectorU0 is denoted by[Y0U0]. The
standard stereographic projection is defined between
S2 and the planez= 0 through a projection with
its center at the north pole ofS2, i.e. N = (0,0,1).
See Fig. 1. We need to extend this definition in three
ways. First, any pointC= (c0, c1, c2) on S2 can be
used as the center of a stereographic projection. In
this case, unless otherwise specified, the correspond-
ing projection planeMC passes through the origin
and has(c0, c1, c2) as its normal vector. Second, any
plane not passing through the center of projection
can be used as the projection plane. In this case, the
stereographic projection is still birational, but in gen-
eral no longer possesses the circle-preserving prop-
erty. Third, we extend stereographic projection to
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a hypersphereSn. In this case, the center of projec-
tion is a pointC on Sn, and the mapping is defined
betweenSn and a hyperplane inEn+1.
For general dataD = {X0,T0; X1,T1} on Sn, there
exists an affine 3-spaceH that is spanned by points
X0 and X1 and vectorsT0 andT1; if the three vec-
tors X1− X0, T0, andT1 are linearly independent,
H is a translation of the 3-D linear space spanned
by X1− X0, T0, and T1. Let S denote the 2-D
sphere that is the intersection ofSn and H. Then
we can consider a similar problem of interpolating
D = {X0,T0; X1,T1} by an SR quartic curve onS.
Since the existence of solutions is invariant under
scaling transformation, without loss of generality, we
can replaceS by S2. Thus, we only need to prove
that, for any dataD = {X0,T0; X1,T1} on S2, there
exist SR quartic curves onS2 that interpolateD.
Consequently, the existence proof for a hypersphere
Sn will follow.

Theorem 1. Let X0 and X1 be two distinct points
on S2. Let T0 and T1 be two nonzero vectors that
are tangent toS2 at X0 and X1, respectively. There
exist SR quartic curves onS2 that interpolateD =
{X0,T0; X1,T1}.
Proof. We use stereographic projection as the main
mechanism in the proof. Consider the pencil of
planes passing through[X0X1]. There are two planes
P0 andP1 in this pencil that contain the tangent lines
[X0T0] and[X1T1] of S2, respectively. Now choose
a pointC ∈ S2 distinct fromX0 andX1 such that the
plane determined byC, X0 and X1 is distinct from
P0 and P1. Obviously, all points onS2 can be se-
lected asC, except those on the two circlesP0∩S2

andP1∩S2.
Now consider the stereographic projectionPC cen-
tered atC from the projection planeMC to S2. Ac-
cording to the wayC is chosen,X0 andX1 and the
two tangent lines[X0T0] and[X1T1] are mapped by
P−1

C into two pointsY0 andY1 and two linesg and
h, respectively, on the planeMC, in such a config-
uration that the lineg does not containY1 and the
line h does not containY0. The four different config-
urations of the mapped data on planeMC are shown
in Fig. 2
Let Z = g∩h denote the intersection point between
linesg andh. A key assumption we have to make is
thatY0, Y1, andZ are finite points. This can be sat-
isfied by properly choosing the projection planeMC.
Let Wi denote the plane determined by pointC and
line [Xi Ti ], i = 0,1. Let L denote the intersection

line between planesW0 andW1. ThenY0, Y1, andZ
are all finite points onMC as long asMC is not paral-
lel to any of the lines[X0C], [X1C], andL.
For a pointY in the planeMC, the mapPC induces
a linear mapTY from the space of vectors origi-
nating atY on the planeMC to the space of tan-
gent vectors toS2 atPC(Y). Let U0= T −1

Y0
(T0) and

U1= T −1
Y1
(T1). Let D̂ = {Y0,U0;Y1,U1}. Clearly, if

we can find a curveQ(t) interpolatingD̂ in the plane
MC, thenP(t)= PC(Q(t)) will be a spherical curve
on S2 interpolatingD.
Now consider a rational quadratic Bézier curve

Q(t)=Q0w0B2,0(t)+Q1w1B2,1(t)+Q2w2B2,2(t)

w0B2,0(t)+w1B2,1(t)+w2B2,2(t)
,

t ∈ [0,1]
with control pointsQ0 = Y0, Q2 = Y1, and Q1 =
Z = g∩h. Since

Q′(0)=2w0

w1
(Q1−Q0) andQ′(1)=2w2

w1
(Q2−Q1)

to makeQ(t) interpolateD̂, we must find the weight
wi such that(2w0/w1)(Q1−Q0)=U0 andQ′(1)=
(2w2/w1)(Q2−Q1) = U1. Without loss of gen-
erality, we can assumew0 = 1. Thenw1 andw2
can be solved for uniquely as follows. IfQ1−Q0
andU0 have the same direction, thenw1 = 2|Q1−
Q0|/|U0|; otherwisew1=−2|Q1−Q0|/|U0|. Hav-
ing obtainedw1, if Q2−Q1 andw1U1 have the
same direction, thenw2 = |w1U1|/(2|Q2− Q1|);
otherwisew2 = −|w1U1|/(2|Q2−Q1|). In cases 2
and 3, and probably in case 4 of Fig. 2, the curve
Q(t) is discontinuous, since it contains points at in-
finity. However, its image curveP(t) = PC(Q(t))
under stereographic projection is still a continuous
SR quartic curve, which interpolates the original data
D = {X0,T0; X1,T1}, since points at infinity onMC
are mapped byPC into well-defined points onS2.
Hence, the existence of SR quartic curves interpolat-
ing D is proved.

Remarks.In this proof, when the center of projection
C and the projection planeMC are fixed, the result-
ing SR quartic curveP(t) interpolatingD is unique,
sinceQ(t) is unique onMC. If we use a different pro-
jection planeM̂C, while fixing C, then the resulting
SR curveP̂(t) on S2 interpolatingD is the same as
P(t), since the intermediate rational quadratic curve
Q̂(t) on M̂C is related toQ(t) under a perspective
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Case 4.

Fig. 2. Four cases of the mapped data

projection. Hence,P(t) is uniquely determined by
the center of projectionC and is independent of the
choice of the projection planeMC.
By Theorem 1 and the discussion preceding it, we
obtain Theorem 2

Theorem 2. Let X0 and X1 be two points onSn,
n ≥ 2. Let T0 and T1 be two nonzero vectors that
are tangent toSn at X0 and X1, respectively. There
exist SR quartic curves onSn that interpolateD =
{X0,T0; X1,T1}.
We are now interested in knowing how many SR
quartic curves there are onS2 interpolating the given
dataD = {X0,T0; X1,T1}. First, some properties of
SR quartic curves onS2 are given.

Theorem 3. An SR quartic curve onS2 has ex-
actly one singular point. Furthermore, an SR quartic
curve on S2 is the image of a rational quadratic
curve under the stereographic projection centered at
the singular point of the SR quartic curve.

Remarks.This is implied by a classical result about
algebraic curves on a quadric surface [10]. There are
two species of quartic curves lying on a quadric sur-
face. A rational quartic curve on a sphere is in the
first speciesif it can be obtained as the intersection
of two quadrics; a quartic curve in thesecond species
is the partial intersection of a quadric and a cubic
surface. Here we provide a simple argument for this
result.
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Proof. Let P(t) be an SR quartic curve onS2. Let
C = P(t0) be a regular point onP(t). Consider the
stereographic projectionPC with its center atC. It
is easy to see thatP(t) is mapped byP−1

C into a ra-
tional cubic curveQ(t) in the planeMC. It is well
known that a rational cubic planar curve has exactly
one double point [15]. Let̂U denote the double point
of Q(t). Let U = PC(Û). ThenU is a double point
of P(t) on S2. Now useU as the center of another
stereographic projectionPU . Then P(t) is mapped
byP−1

U into a rational quadratic curveP−1
U (P(t)) on

the projection planeMU . Hence,P(t) is the image of
a rational quadratic curve under a stereographic pro-
jection centered atU. This completes the proof.

In the proof, if we construct a quadratic cone with
its apex atU and its intersection with the planeMU

being the conic sectionP−1
U (P(t)), then the curve

P(t) plus pointU form the intersection between the
sphereS2 and the quadratic cone. Thus, we have
Theorem 4.

Theorem 4.Any SR quartic curve onS2 is the inter-
section curve betweenS2 and a quadratic cone with
its apex onS2.

A detailed discussion about the classification of de-
generate intersection curves between two quadric
surfaces can be found in [2]. The degree of freedom
of an SR quartic curve interpolating the given data
D = {X0,T0; X1,T1} on S2 is given by the next the-
orem.

Theorem 5.Given the dataD = {X0,T0; X1,T1} on
S2, the family of all SR quartic curves onS2 inter-
polating D= {X0,T0; X1,T1} has two free parame-
ters.

Proof. By Theorem 3, all SR quartic curves onS2

can be obtained as the images of rational quadratic
curves through stereographic projection. Given any
dataD= {X0,T0; X1,T1} onS2, according to the ar-
gument in the proof of Theorem 1, there is a unique
SR quartic curve interpolatingD for each fixed cen-
ter of stereographic projection.
Now we just need to show that different points on
S2, when they are used as centers of different stereo-
graphic projections, give rise to different SR quartic
curves onS2 interpolatingD. Let P1(t) andP2(t) be
two SR quartic curves interpolatingD that are ob-
tained by using two distinct pointsC1 and C2 on
S2 as the centers of stereographic projection, respec-
tively. Then P1(t) and P2(t) are two different SR

quartic curves, since, by Theorem 3, they have dis-
tinct singular pointsC1 andC2. Hence, the degree of
freedom of all SR quartic curves onS2 interpolating
D is the same as that of all points onS2 (except for
the points on two circles), which is 2. This completes
the proof.

While Theorem 3 states that stereographic projection
can be used to generate all SR quartic curves interpo-
lating the given dataD= {X0,T0; X1,T1} onS2, the
evidence to be examined indicates that stereographic
projection is incapable of generating all SR quartic
curves interpolatingD if D is given onSn, where
n≥ 3. By ‘using stereographic projection’ we mean
here that one aims at obtaining SR quartic curves
as the images of rational quadratic curves. Suppose
the dataD = {X0,T0; X1,T1} on Sn are mapped by
a stereographic projection intôD= {Y0,U0;Y1,U1}
to be interpolated by a rational quadratic curve. Since
any rational quadratic curve is necessarily planar,
the dataD̂ must be contained in a 2-D plane. How-
ever, for general dataD = {X0,T0; X1,T1} on Sn,
it is easy to see that̂D is contained in a 2-D plane
if and only if the center of projection is on the 2-
D sphereS that is the intersection betweenSn and
the unique 3-D flatH spanned byD. By an argu-
ment similar to that leading to Theorem 5, we con-
clude that the family of SR quartic curves onSn

interpolating D that can be obtained by the stere-
ographic projection approach has only two degrees
of freedom, and all these SR quartic curves lie on
the 2-D sphereS, hence in the 3-D flatH. As a ra-
tional quartic curve naturally spans a 4D space, we
suspect that the SR quartic curves given by stereo-
graphic projection form only a subset of all possible
SR quartic curves onSn, n≥ 3. Indeed, in the next
section we take an algebraic approach to generat-
ing all SR quartic curves interpolating the given data
D = {X0,T0; X1,T1} on Sn, and show that the fam-
ily of these curves actually hasn degrees of freedom.

3 Computation

While stereographic projection is used in the exis-
tence proof, we recognize three problems with using
it for computing SR quartic interpolating curves.

1. Such a construction scheme would depend on
first choosing a center of projection, which is
a difficult task unless the dataD is well behaved,
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i.e. X0 andX1 are close to each other and the di-
rections ofT0 andT1 do not deviate much from
the direction of vectorX1− X0.

2. The stereographic projection is not distance pre-
serving, and there is in general considerable
shape distortion between the intermediate inter-
polating rational quadratic curveQ(t) and its
imageP(t)= PC(Q(t)), especially when discon-
tinuous curvesQ(t) are encountered, as in cases 2
and 3 in Fig. 2.

3. Most importantly, as suggested at the end of
last section and to be verified later in this sec-
tion, the stereographic projection images of ratio-
nal quadratic curves do not yield all SR quartic
curves onSn.

Based on these considerations, we shall study a di-
rect algebraic approach to computing SR quartic
curves onSn interpolating the dataD = {X0,T0;
X1,T1}, given the existence of such curves by
Theorem 2.
In the following, a pointX is represented by ho-
mogeneous coordinatesX = (x0, x1, . . . , xn,w)

T in
En+1. For a finite point X with w 6= 0, we call
(x0/w, x1/w, . . . , xn/w,1)T the standard formof
X.
Consider a rational quartic curve in homogeneous
coordinates in Bézier form

P(t)= %0P0B0,4(t)+w0P1B1,4(t)+ P2B2,4(t)
+w1P3B3,4(t)+%1P4B4,4(t), t ∈ [0,1].

We assume that all thePi , except for P2, are
in the standard form.P(t) is used to interpolate
data pointsX0, X1 on Sn and end tangent vec-
tors T0 and T1 specified atX0 and X1, respec-
tively. Here theXi , i = 0,1, are in the formXi =
(x0,i , x1,i , . . . , xn,i ,1)T and theTi , i = 0,1, are in
the formTi = (t0,i , t1,i , . . . , tn,i ,0)T .
Denote the standard form ofP(t) by P̃(t). Then the
interpolation conditions are

P̃(0)= X0, P̃(1)= X1

P̃′(0)= T0, P̃′(1)= T1.

It follows first thatP0= X0 andP4= X1. It is easy to
verify that

P̃′(0)= 4w0

%0
(P1− P0).

Then it follows fromP̃′(0)= T0 that

P1= X0+ %0

4w0
T0. (1)

Similarly,

P3= X1− %1

4w1
T1. (2)

SettingV0= T0/4 andV1=−T1/4, we obtain

P1= X0+ %0

w0
V0, P3= X1+ %1

w1
V1.

Thus,P(t) can be written as

P(t)= %0X0B0,4(t)+ (w0X0+%0V0)B1,4(t)
+ P2B2,4(t)+ (w1X1+%1V1)B3,4(t)
+%1X1B4,4(t), t ∈ [0,1].

Let Sn be represented byXT AX= 0, whereA=
diag[1,1, . . . ,1,−1] is an(n+2)× (n+2) matrix.
ThenP(t)T AP(t)= 0 for all t. Using the relation

Bi,4(t)Bj,4(t)= 4!4!(i + j)!(8− i − j)!
8!i !(4− i)! j !(4− j)! Bi+ j,8(t),

P(t)T AP(t) can be expressed as a linear combi-
nation of the basis functionsBk,8(t), 0≤ k ≤ 8.
SinceP(t)T AP(t)= 0, all the nine coefficients of the
Bk,8(t) in this expression should be zero. Since

XT
0 AX0= XT

0 AV0= XT
1 AX1= XT

1 AV1= 0, (3)

the first two and the last two coefficients vanish auto-
matically. The vanishing of the five remaining coeffi-
cients leads to the equations

3

7
%0XT

0 AP2+ 4

7
(w0X0+%0V0)

T

× A(w0X0+%0V0)= 0 (4)
1

7
%0XT

0 A(w1X1+%1V1)+ 6

7
(w0X0+%0V0)

T

× AP2= 0 (5)
18

35
PT

2 AP2+ 16

35
(w0X0+%0V0)

T A(w1X1+%1V1)

+ 1

35
%0%1XT

0 AX1= 0 (6)

1

7
%1XT

1 A(w0X0+%0V0)+ 6

7
(w1X1+%1V1)

T

× AP2= 0 (7)
3

7
%1XT

1 AP2+ 4

7
(w1X1+%1V1)

T

× A(w1X1+%1V1)= 0. (8)
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Using (3) and assuming%0%1 6= 0, these equations
can be simplified into

3XT
0 AP2+4%0VT

0 AV0= 0 (9)

%0XT
0 A(w1X1+%1V1)+6(w0X0+%0V0)

T

× AP2= 0 (10)

18PT
2 AP2+16(w0X0+%0V0)

T A(w1X1+%1V1)

+%0%1XT
0 AX1= 0 (11)

%1XT
1 A(w0X0+%0V0)+6(w1X1+%1V1)

T

× AP2= 0 (12)

3XT
1 AP2+4%1VT

1 AV1= 0. (13)

From Eqs. 9 and 13, there are

XT
0 AP2=−4

3
%0VT

0 AV0 and

XT
1 AP2=−4

3
%1VT

1 AV1. (14)

Substituting them into Eqs. 10 and 12 respectively,
removing the factors%0 and%1, and rearranging the
order, we obtain the following of equations

3XT
0 AP2=−4%0VT

0 AV0 (15)

3XT
1 AP2=−4%1VT

1 AV1 (16)

6VT
0 AP2= 8(VT

0 AV0)w0− (XT
0 AX1)w1

− (XT
0 AV1)%1 (17)

6VT
1 AP2=−(XT

0 AX1)w0+8(VT
1 AV1)w1

− (XT
1 AV0)%0 (18)

18PT
2 AP2+16(w0X0+%0V0)

T A(w1X1+%1V1)

+%0%1XT
0 AX1= 0. (19)

Here the last equation is identical to Eq. 11. This is
a system of five homogeneous equations bindingn+
6 homogeneous variables (n+2 variable coordinates
of P2 plus the four weights%0,%1,w0, andw1). Thus,
in general, the number of independent parameters is
(n+6)−5−1= n. By Theorem 2, these equations
must be consistent and have real solutions.
Now we discuss how to solve this system of equa-
tions. The general idea is to substitute the weights%0,
%1, w0, andw1 in Eq. 19 to turn it into a quadratic
equation in P2. Let ∆ ≡ 64(VT

0 AV0)(VT
1 AV1)−

(XT
0 AX1)

2. There are two cases to consider: (1)
∆ 6= 0 and (2)∆= 0.

In case 1, using the relations of Eq. 14, it follows
from Eq. 15 – 18 that

%0=−3XT
0 AP2

4VT
0 AV0

(20)

%1=−3XT
1 AP2

4VT
1 AV1

(21)

8(VT
0 AV0)w0− (XT

0 AX1)w1

= 6VT
0 AP2− 3XT

0 AV1

4VT
1 AV1

(XT
1 AP2) (22)

−(XT
0 AX1)w0+8(VT

1 AV1)w1

= 6VT
1 AP2− 3XT

1 AV0

4VT
0 AV0

(XT
0 AP2). (23)

Since∆ 6= 0,w0 andw1 can be expressed linearly in
terms ofP2 from the last two equations. Substituting
w0, w1, %0, and%1 into Eq. 19, we obtain a homo-
geneous quadratic equation, denoted byF1(P2)= 0,
in the n+2 coordinates ofP2. Each solutionP2 of
F1(P2) = 0 determines uniquely the values ofw0,
w1, %0, and%1, which in turn yield an SR quartic
curve interpolatingD= {X0,T0; X1,T1}.
By Theorem 2,F1(P2) = 0 has real solutions. For
better notation, we denote the equationF1(P2) = 0
by F1(Y)= 0, with Y standing for then+2 variable
coordinates ofP2. The standard way to find all real
points on the quadric surfaceF1(Y)= 0 is to reduce
F1(Y)= 0 by affine transformation into a canonical
form F̃1(X̃)= 0. It is then easy to find a real pointC̃1

on surfacẽF1(Ỹ)= 0, and therefore a corresponding
real pointC1 on F1(Y)= 0. UsingC1 as a center of
projection, a rational quadratic parameterization of
the quadric surfaceF1(Y) = 0 can be obtained [12].
This parameterization gives out all real pointsP2 on
F1(Y)= 0, except for the centerC1.
In case 2, since∆= 0,w0 andw1 cannot be isolated
from Eqs. 22 and 23. In this case, for Eqs. 22 and 23
to be consistent, the following linear condition must
be imposed onP2.∣∣∣∣∣∣∣

8(VT
0 AV0) 6VT

0 AP2− 3XT
0 AV1

4VT
1 AV1

(XT
1 AP2)

−(XT
0 AX1) 6VT

1 AP2− 3XT
1 AV0

4VT
0 AV0

(XT
0 AP2)

∣∣∣∣∣∣∣= 0,

(24)

which is denoted byL2(P2)= 0. Since the system of
equations under consideration is homogeneous, we
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may setw0 = 1. Thenw1 can be solved for from
Eq. 22 as

w1= 1

XT
0 AX1

[
8(VT

0 AV0)−6VT
0 AP2

+3XT
0 AV1

4VT
1 AV1

(XT
1 AP2)

]
.

Settingw0 = 1, substituting thisw1, and%0 and%1
from Eqs. 20 and 21, into Eq. 19, we obtain an in-
homogeneous quadratic equation inP2, denoted by
F2(P2) = 0. Thus,P2 is determined byL2(P2)= 0
andF2(P2)= 0.
Again, by Theorem 2, there are real solutionsP2 sat-
isfying L2(Y)= 0 andF2(Y)= 0; hereY denotes the
coordinates ofP2. All real solutionsP2 can be found
by the following procedure. First we pickn+1 lin-
early independent pointsUi , i = 0,1, . . . ,n, on the
hyperplaneL2(Y) = 0. Then we obtain a linear pa-
rameterization ofL2(Y)= 0 such as

Y(R)= r0U0+ r1U1+· · ·+ rnUn,

where R= (r0, r1, . . . , rn). SubstitutingY(R) into
F2(Y) = 0, we obtain a quadric surfaceG2(R) ≡
F2(Y(R)) = 0, which is inhomogeneous, since
F2(Y) = 0 is inhomogeneous. Then the similar
procedure in case 1 can be used to parameterize
G2(R) = 0 to get all the real points onG2(R) = 0.
These points in turn give out all solutionsP2 through
P2= Y(R).
Clearly, in either case 1 or case 2, there aren inde-
pendent free parameters in the solution ofP2. Hence,
the family of all SR quartic curves interpolatingD=
{X0,T0; X1,T1} onSn hasn degrees of freedom.
Now we use a running example to illustrate the pro-
cess of computing an SR quartic interpolating curve.
ConsiderD = {X0,T0; X1,T1} on S2, whereX0 =
(1,0,0,1)T, T0 = (0,1,0,0)T , X1 = (0,1,0,1)T ,
and T1 = (0,0,1,0)T. Then V0 = (0,1/4,0,0)T

andV1= (0,0,−1/4,0)T. Since∆=−3/4 6= 0, we
have case 1 at hand, and we can solve forw0 andw1
from Eqs. 22 and 23. We then obtain

%0= (−12,0,0,12)P2 (25)
%1= (0,−12,0,12)P2 (26)
w0= (−4,−1,−2,4)P2 (27)
w1= (2,2,1,−2)P2. (28)

Substituting these into Eq. 19, we have a quadratic
equation inP2, denoted byYT MY= 0, where

Fig. 3. Some SR quartic interpolating curves onS2

M =
 5 −4 4 4
−4 5 4 4

4 4 5 −4
4 4 −4 −13

 .
It is easy to see thatP2= (0,0,−1,1)T is a solution
of YT MY = 0. Using thisP2, by Eqs. 25 – 28, we
find the weights%0, %1, w0, andw1, which in turn
yield the control pointsP1 andP3 through Eq. 1 and
2. Finally, we obtain the following SR quartic curve
interpolatingD.

P(t)= %0P0B0,4(t)+w0P1B1,4(t)+ P2B2,4(t)

+w1P3B3,4(t)+%1P4B4,4(t), t ∈ [0,1],
where%0= %1= 12,w0 = 6,w1 =−3, P0= (1,0,
0,1)T, P1 = (1,0.5,0,1)T , P2 = (0,0,−1,1)T ,
P3= (0,1,1,1)T , andP4= (0,1,0,1)T .
Figure 3 shows another example of some SR quar-
tic curves onS2 interpolating the dataD = {X0,T0;
X1,T1}, with X0 = (1,0,0,1)T , T0 = (0,3,0,0)T ,
X1= (0,1,0,1)T , andT1= (0,0,1,0)T .
Figure 4 shows a spherical motion generated by
an SR quartic curve onS3 interpolating the data
D = {X0,T0; X1,T1}, with X0 = (0,0,0,1,1)T ,
T0= (0,1,0,0,0)T, X1= (0,1,0,0,1)T , andT1=
(0,0,1,0,0)T ; a point (x0, x1, x2, x3,1)T ∈ S3 is
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Fig. 4. The spherical motion generated by a 4D SR curve

identified with the unit quaternionq = x3+ x0i +
x1 j +x2k. HereP2≈ (2.687419,0.0,0.0,0.0,1.0)T.
Clearly,P(t) is a 4-D curve sinceP2 is not contained
in the 3-space spanned byX0, X1, T0, andT1.

4 Conclusion

We have shown that there exist SR quartic curves in-
terpolating any Hermite dataD = {X0,T0; X1,T1}
on Sn, n≥ 2, and all these curves form a family with
n degrees of freedom. In addition, it is shown that,
except onS2, not all of these curves can be gener-
ated as the images of rational quadratic curves under
stereographic projection, which is the main approach
used in many existing methods in the literature for
constructing SR curves. We also present an algebraic
method of computing all SR quartic curves interpo-
lating dataD = {X0,T0; X1,T1} on Sn. An interest-
ing note is that any SR quartic curve onS2 is the
intersection curve betweenS2 and a unique quadratic
cone with its apex onS2.
From the viewpoint of CAGD, given the consider-
able degree of freedom of SR quartic curves onSn,
an important problem for further research is to study
the shape property and velocity control of these inter-
polating curves.
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